
June 2002 www.stsc.hill.af.mil 9

Customers rank reliability first on their
list of most critical quality attributes,

according to a recent survey of the largest
customers of complex real-time telecom-
munications systems and data published in
the Army’s software metrics newsletter,
Insight (Spring 2000) [1]. With the cost of
some systems exceeding tens or even hun-
dreds of millions of dollars and with a
development duration of more than 12 to
18 months, early reliability estimation can
significantly contribute to the success (or
early rational cancellation) of the project.
With recent strong emphasis on speed of
development, the decisions made on the
basis of early reliability estimation can
have the greatest impact on schedules and
cost of software projects. Software relia-
bility may also be significantly improved in
an early stage by a focused review and
inspection process, early defect removal,
and thorough test effort.

Software reliability estimation provides
a solid foundation to perform meaningful
tradeoff studies at project start. It also
provides a projection of the software fail-
ure rate before systems tests begin or at
any point throughout. After estimation,
the next logical step is creating a software
reliability growth model, which covers the
period where reliability improves as the
result of thorough peer reviews, testing,
and fault correction. Reliability metrics
help to predict such critical factors as the
initial failure rate, final failure rate, fault
density, fault profile, etc.

The final outcomes of software relia-
bility estimation include the following:
• An estimation of the number of faults

expected during each phase of the life
cycle.

• A constant failure rate estimation at
system release.

• Relative measures for practical use and
management such as duration of sys-
tem test and size of the test team.
If software reliability estimation is per-

formed early in the software life cycle, it is

possible to determine what improvement,
if any, can be made to the software meth-
ods, techniques, or organizational struc-
ture. As described in this article, our expe-
rience also confirmed what many recent
articles and publications have suggested:
A successful, meaningful estimating strat-
egy must simultaneously use more than
one estimating technique [2].

For early software reliability estima-
tions, an estimation team used a number
of software reliability models. The team
compared the results of these models
with each other and with the reliability
data provided by cost/effort estimation
model KnowledgePLAN, which was
selected a few years ago after Bell Labs’
studies of more than a dozen different
estimation models (the COCOMO tool
came out a very close second). This
expert system tool contains in its database
more than 8,000 actual projects that along
with size, cost, effort, and other attributes
have data about the total number of
inherent faults, their distribution among
major phases of life cycle, the severity of
faults, and potential defect removal effi-
ciency [3].

As with any other existing cost estima-
tion tool, KnowledgePLAN had to be
fine-tuned and thoroughly calibrated for
the particular project to be consistent and
reliable. At the same time in this environ-
ment, the KnowledgePLAN question-

naires on the project/process develop-
ment activities were used as a shell for the
company-wide software process assess-
ments, together with some parts of the
Software Engineering Institute’s
Capability Maturity Model® (CMM®).
These assessments were used for internal
benchmarking of current development
practices and helped to easily identify sim-
ilar projects, which was essential for a
meaningful comparison [4].

Estimating Parameters
AT&T/Lucent’s experience in software
reliability estimation for a number of
large telecommunications projects is evi-
dence that the size of the project (in func-
tion points or sometimes in thousands of
lines of code [KLOC]) is the most signif-
icant single factor for estimating the num-
ber of inherent faults [4]. The second
most important factor is project complex-
ity, which can be represented by McCabe’s
cyclomatic complexity measure (problem,
code, and data complexity). Those com-
plexity measures strongly depend on the
application types of the project [3, 5].

The KnowledgePLAN tool uses sim-
plified McCabe’s complexity factors in its
questionnaire, as does its predecessor
Checkpoint. Also our previous independ-
ent studies found that the fault-reduction
factor is relatively stable across different
projects in the same organization, though
the fault-exposure ratio may be depend-
ent on the structure of the program and
the degree to which faults are data
dependent. However, these effects are
often averaged out for programs of sub-
stantial size such as the large projects the
estimation team often deals with [6].

To increase estimation accuracy and
our ability to better control the discovery-
of-faults process, the team concluded the
following: The software reliability estima-
tion must be performed in early phases of
the life cycle by using phase-based models
that emphasize the availability of size and

Early Estimation of Software Reliability in
Large Telecom Systems

Alex Lubashevsky
Independent Consultant

This article describes early estimation experiences with software reliability of complex real-time telecommunications systems
based on size estimation and the process assessment. It emphasizes the importance of estimation for evaluating the feasibili-
ty of proposed reliability requirements and providing a rational basis for design and allocation decisions. A number of crit-
ical factors for building a reliability estimation model are discussed along with typical sizing processes and estimation tools.
The modified U.S. Air Force’s Rome Laboratory model was selected as the best practical candidate for the early estimation
of software reliability. A data comparison of its results to a traditional estimation model is presented.

“Software reliability
estimation provides a
solid foundation to
perform meaningful
tradeoff studies at

project start.”

Software Estimation

10 CROSSTALK The Journal of Defense Software Engineering June 2002

corresponding effort for the project dur-
ing early phases. In our case, the estima-
tion team obtained the size and effort in
the early stage of development very often
by using the function point method [7].
However, for some legacy projects, the
data were derived by the analogy method
or by experts’ iterative estimations such as
Delphi analysis [5].

Also, the number of factors needed
for building reliability estimation, which
significantly relates to fault density at the
early stages such as application type,
development environment, and some
other software metrics, can be obtained
relatively easily from the results of previ-
ously performed company-wide software
process assessments. After a number of
studies and experiments with different
types of reliability models, the team
selected the U.S. Air Force’s Rome
Laboratory model [8]. The estimation
team chose this model because it allows
us to track the influence on software reli-
ability of the various application types by
different development organizations,
methods, tools, techniques, and other
software factors, and it is closely correlat-
ed to our development methodology.

Estimating Size and Reliability
Early
Size estimation consists of two phases,
called passes, which require using highly
trained and experienced estimators. After
a list of new or modified features is prior-
itized during the proposal stage, the first
pass provides a quick rough estimate of
size/effort required to develop the fea-
tures. These are then given to product
management to determine the budget for
an upcoming release.

The estimate is determined by break-
ing up the software into smaller pieces,
consulting with experts, and forming
analogies to previously developed soft-
ware with similar features. If a separate
estimation repository database updated on
a quarterly basis contains the data for a
similar feature, the preliminary data for
the size/effort estimation and often the
total number of inherent faults are readily
available. If data from the repository are
not available, one of the reliability estima-
tion models with some of the default
parameters is used. One or two members
of the planning group usually generate the
first-pass estimate with accuracy within 50
percent.

The second pass is a detailed estimate
done near the end of the requirements
process to define size/effort of a feature,
a subsystem, or system level. The develop-

ment planning group usually coordinates
the entire process. For some projects, the
second-pass estimates are based on the
judgment of experienced developers
(rather than expert estimators) who are
using a bottom-up estimation technique
based on historical data to outline and
estimate the tasks by functional area that
will be required to develop a feature.

This group meeting is used to obtain a
single estimate from a group of experts
after an open discussion. The meeting is a
forum for experts to discuss requirements
and designs, consider a tradeoff between
the reliability of the product and cost and
schedules of the project, resolve issues,
and work together to create and tune their
estimates. The Delphi technique [5] can be
combined with the group meeting
approach. The group meeting is used to
discuss estimation issues and the experts
give their opinions. These estimates are
discussed again, and the process is repeat-
ed until a consensus is reached.

Size/effort estimation and early relia-
bility estimation by analogy was the most
popular method. The technique assumes
that if two projects are alike in some
respects, other similarities can be inferred.
The current project is compared with sim-
ilar completed projects to get a ballpark
estimate; experts then factor in the differ-
ences between the projects. Estimation by
analogy can be applied to a total system, a
module, or a task. A historical database is
the best tool for estimation by analogy.
Here are sources for analog data in the
order of decreasing preferences:
• Data from a previous release of the

same project.
• Data from a similar project in the same

company.
• Data from a similar project in a differ-

ent company.
Industry data can be used if company data
are not available, but they must be cali-
brated to company data as soon as they
are available.

For a completely new project that may
have no relevant data or experience on
which to base estimates, particularly if the

project is moving to a new methodology
such as from a traditional to an object-ori-
ented approach, the following estimation
strategy is recommended: Create, if possi-
ble, an analog by dividing the product into
components and actually doing develop-
ment on a typical component to estimate
the remainder of the project. Also, the fol-
lowing additional information associated
with the software cost/effort estimation
and reliability estimation is recommended:
• Project management tracks baseline,

current and completion dates, and the
number of detected faults.

• At the end of each software release,
postmortem compares actual vs.
detailed estimates for the features.

• The estimation process is evaluated on
two criteria: responsiveness (in busi-
ness days) and accuracy, which is
defined as the percent of relative error
between the detailed estimate and
actual data.
The new estimation process described

in the next section also consists of two
phases (sometimes an additional zero
phase is added) and is based on more con-
sistent usage of estimation tools and tech-
niques and less reliance on high human
expertise. But this estimation practice
strongly concurs with the suggestion that
the most important factor in improving
estimation is to “hold its software estima-
tors, developers, and managers account-
able for their estimates” [9].

A New Estimation Process
Our new estimation process is based on
size estimation using function point analy-
sis (FPA), which is usually performed
based on complete requirements [7] in
combination with estimation tools like
KnowledgePLAN and the modified Rome
Labs estimation model. (In some cases,
FPA is based on particular telecom
domains or, even earlier, based on the
high-level Feature Definition and
Assessment Form (FDAF), the most
important estimation phase called zero
pass.)

The project size in function points
(FP) is one of the significant inputs for
the KnowledgePLAN tool. Other input
information collected by the Knowledge-
PLAN’s questionnaire describes the type,
nature, and complexity of the project, the
project management practices, the expert-
ise and morale of the team, together with
a few dozen other attributes of the partic-
ular project. This enables the tool to
choose the project having the closest
match from its vast knowledge base of
previously collected industry projects.

As output, the tool generates many

“Size estimation
consists of two phases,

called passes,
which require using
highly trained and

experienced estimators.”

Early Estimation of Software Reliability in Large Telecom Systems

June 2002 www.stsc.hill.af.mil 11

useful estimation reports on resources,
schedule, etc., and also on the total num-
ber of defects that will be introduced dur-
ing various stages of the project. While in
the past the estimation team widely used
the predicted reliability data on potential
defects from the Checkpoint estimation
tool (KnowledgePLAN’s predecessor), the
team decided to compare the estimation
tool’s results with those from another
software reliability model.

For this purpose, the original U.S. Air
Force’s Rome Laboratory model, RL-TR-
92-52 [8] was modified to allow for more
than 60 telecommunications applications
to be included in the historical database,
and also to allow for the usage of the FP
method, which is growing in popularity in
civil and military applications [4]. Using
available industry and internal data from
the software process assessment (SPA)
and the CMM of the organization devel-
oping the software, the major nine factors
of the Rome Lab’s model were expanded
to include new ranges of values in FPs.
(See Table 1).

Originally, the output of the Rome
Lab’s model is a fault density in terms of
faults per KLOC. To compute the total
estimated number of inherent defects, the
fault density should be multiplied by the
total predicted number of KLOC. If
function points are being used and no
KLOC is available for correlation, the
backfire method (low accuracy table for
the conversion of source lines of code to
FPs [3, 4]) is sometimes recommended.
Also the Rome Lab’s model is very useful
for predicting fault density at delivery
time; subsequently, this fault density is uti-
lized to predict the total number of inher-
ent faults and the failure rate.

The fault density of the application
(A) is predicted by using a baseline fault
density established for applications of the
same type, adjusted to reflect the influence
of the development environment (D) and
the software characteristics (S) of the spe-
cific application. Once fault density is
determined, the failure rate (FR) can be
predicted by applying empirical value
(EV), established from historical data for
the application type, to the fault density.
The Rome Lab’s model contains empirical
data that have a total of 33 data sources
representing 59 different projects (some
from Software Engineering Laboratory).

Fault Density: FD = A x D x S
(faults/FPs or LOC)

Estimated number of Inherent Faults:
N = FD x SIZE

Failure Rate: FR = FD x EV
(faults/time)

This model has the following significant
benefits:
• It can be used as soon as the software

concept is known.
• During the concept phase, it allows

what-if analysis to be performed to
determine the impact of the develop-
ment environment on fault density. (In
our case, the data from the previous
SPA for this organization will be
reused.)

• During the concept phase, it allows
what-if analysis to be performed to
determine the impact of software
characteristics on fault density. (Also
the data from the previous SPA for
this organization will be reused.)

• It allows for system software reliability
allocation because it can be applied
uniquely to each application type com-
prising a large software system.

• The estimation can be easily cus-
tomized using unique values for the A,
D, and SIZE factors based upon his-
torical software data from the specific
organization’s environment.
The Rome Lab’s model consists of

nine factors (Table 1, first column) that
are used to predict the fault density of the
software application. That is, application
type factor (which could be real-time con-
trol systems, scientific, or information
management) with the range of values of
two to 14 defects per KLOC, or 0.2 to 1.5
defects per FP. This demonstrates the
potential influence of different applica-
tion types on fault density in an early
phase of development. Similar logic
applies to the rest of the factors: They
show the potential ranges of values for

fault density that depend on the type of
factors and measures associated with
them.

There are parameters in this estimation
model that have tradeoff capability (maxi-
mum/minimum predicted values). The
analyst can determine where some
changes can be made in the software engi-
neering process or product to achieve
improved fault-density estimation. This
tradeoff is valuable only if the analyst has
the capability to impact the software
development process. (Notice that the
tradeoff is fixed for the type of applica-
tion and is not applicable after you select a
particular software language.) The trade-
off analysis can also be used to perform a
cost analysis by optimizing the develop-
ment.

The values of many of the parameters
in this model may change as development
proceeds. The latest updated values
should be used when making an estima-
tion that will become more and more
accurate with each successive phase until
the final design and implementation.

Table 1 represents the summary of
Rome Laboratory’s estimation model.
The column “Range of Values” shows
original and modified telecom values, the
latter reflecting the historical reliability
data correlated with the data from the
SPA assessments range for more than 60
projects. Most of the factors of the orig-
inal model like software implementation
metrics (SX, SM, SR, etc.), requirements
and design representation metrics (SA,
ST, SQ), and application (A) and develop-
ment environment (D) correspond
almost one-to-one to the factors of the
SPA/SPR questionnaire. The only differ-
ence is that range of values for fault den-
sity is mapped in defects per FPs instead

Factor Measure

Range of Values
Rome Labs Telecom
defs/KLOC defs/FPs

Application
Phase*

Trade-off
Range

A-Application Difficulty in developing
various application types

2 to 14 0.2 to 1.5 AP-T None
fixed

D-Development
 environment

Development org., methods,
tools, techniques, document .5 to 2.0 0.1 to 1.8

If known at
AP, DTLD-T

Largest
range

SA-Software
 anomaly mgmt.

Indication of fault-tolerant
design .9 to 1.1 0.3 to 0.4

Normally,
C-T Small

ST-Software
 traceability

Traceability of design
and code to requests .9 to 1.0 0.2 to 0. 6

Normally,
C-T Large

SQ-Software
 quality

Adherence to coding
standards 1.0 to 1.1 0.2 to 0.3

Normally,
C-T Small

SL-Software
 language

Normalizes fault
density by language type

N/A N/A C-T N/A

SX -Software
 complexity

Unit complexity
.8 to 1.5 0.1 to 0.6 C-T Large

SM-Software
 modularity

Unit size
.9 to 2.0 0.1 to 0.7 C-T Large

SR-Software
 standards review

Compliance with
design rules .75 to 1.5 0.2 to 0.4 C-T Large

*AP = Concept or Analysis Phase, C = Coding, DTLD = Detailed and Top Level Design, and T = Testing

Table 1: Summary of the Rome Laboratory Model, RL-TR-92-52

Software Estimation

12 CROSSTALK The Journal of Defense Software Engineering June 2002

of defects per KLOC.
Table 2 provides an example of data

for one of the critical telecom projects.
The predicted and industry standard data
were generated using the project quality
report of KnowledgePLAN. Actual data
came from the final systems/integration
test reports. The data from the two differ-
ent models were compared and correlated
with the SPA data for this project and the
reliability data produced by the modified
Rome Labs model. The percent of vari-
ance between actual and predicted faults
showed an acceptable range of deviation
(from 10 percent to 27 percent, as com-
pared with the acceptable range for this
most important early stage of estimation:
+/- 50 percent).

Table 2 represents data for a project
size of about 1,800 FPs. The fault density
(1.24 faults/FP) and total number of
inherent faults (2,626) were predicted for
the FDAF stage of the life cycle. These
data, together with some historical infor-
mation for similar projects, helped predict
the duration of systems test with about 15
percent accuracy and the size of the test
team with about 20 percent accuracy. The
early predicted faults in Table 2 are pre-
sented by severity level (based on histori-
cal distribution data for similar projects)
and percent of deviation from actual and
industry database. The 17 percent devia-
tion of total predicted faults to actual is a
significant (almost three times) improve-
ment compared with the first-pass results
(50 percent) at the same stage.

Also during this object-oriented proj-
ect for a real-time telecommunication sys-
tem, the early reliability estimation data
indicated a need for a focused review and
inspection process especially during analy-
sis, design, and additional systems test
effort to fully cover all test cases written
against original user requirements. This
helped to increase defect removal efficien-
cy to 92 percent (which is very high for
this type of transmission application) and
to create a system with software availabili-
ty exceeding Telcordia standards by more
than 10 times. This particular system was

in the field for more than one year without
any major software outage.

Summary
This article has described a number of
experiences of early estimation of soft-
ware reliability for large real-time
telecommunications systems. The bene-
fits of early reliability estimation for the
design and allocation decisions, which can
have a significant impact on schedule and
cost, were also discussed. The article also
emphasized the importance of early size
and complexity estimation on which a
number of software reliability models are
based. The past processes of early size
and reliability estimation (relying on high-
ly qualified human experts) and new
processes (based on the heavy usage of
estimation tools) were described in detail.
The modified Rome Labs estimation
model, based on early size estimation as
well as a number of other factors that
describe the software development
process and its influence on reliability,
was introduced for comparison and was
shown to be very useful. The example of
working with two different models for
early reliability estimation and the positive
results achieved proved that other proj-
ects could significantly benefit from the
above-described processes in building
reliable systems.

References
1. Insight 4:1. Spring 2000. (Insight is the

Army’s Software Metrics Newsletter.
Available at: <www.ArmySoftware
Metrics.org>.)

2. Shepperd, M. J., and C. Schofield.
“Estimating Software Project Effort
Using Analogies.” IEEE Trans.
Software Engineering 23.12 (1997).

3. Jones, T.C. Applied Software Meas-
urement. McGraw-Hill, 1991.

4. Lubashevsky, Alex, and L. Bernstein.
“Living with Function Points at
AT&T.” CrossTalk Nov./Dec.
1995.

5. Boehm, B. W. Software Engineering
Economics. Prentice Hall, 1981.

6. Musa, J. D. Software Reliability.
Measurement, Estimation, Appli-
cation. McGraw-Hill, 1987.

7. Albrecht, A. J., and J. R. Gaffney.
“Software Function, Source Lines of
Code, and Development Effort
Estimation: A Software Science
Validation.” IEEE Trans. Software
Engineering 9.6 (1983).

8. Rome Laboratory. “Methodology for
Software Reliability Estimation and
Assessment.” Technical Report RL-
TR-92-52, Vol. 1 and 2, 1992.

9. Lederer A. L., and J. Prasad. “A Causal
Model for Software Cost Estimating
Error.” IEEE Trans. Software
Engineering 24.2 (1998).

Severity Level Predicted
Industry
Standard Actual

Percent of Variance (Actual to
Predicted/Industry Standard)

1. System
 inoperative 87 103 67 22/35

2. Major functions
 incorrect 408 516 359 14/30

3. Minor functions
 incorrect 1185 1446 1076 10/25

4. Superficial error 945 1034 742 27/28

 Total 2626 3098 2244 17/28

Table 2: Faults by Severity Level

About the Author

Alex Lubashevsky is an
independent consultant
specializing in estimation
and reliability. He was
previously an estimation
project manager with

AT&T/Lucent for 17 years. He was
responsible for estimating size, effort,
interval, and defects for more than 200
telecom and data processing systems
inside and outside the company (IRS,
DELTA, Prudential, etc). While at AT&T,
he also helped to achieve one of the first
industry Capability Maturity Model®

Level 3 ratings. He originated and helped
to develop the first automated CASE tool
for early estimation (Bachman Analyzer).
Lubashevsky was an early industry sup-
porter of Practical Software and Systems
Measurement and a pioneer in the
National Software Council and later a
board member. He has a master’s of sci-
ence degree in computer science from
New York University and a bachelor’s of
science degree in computer science from
the Polytechnic University of Kharkov,
Ukraine. He is a member of the
International Electrical and Electronics
Engineers Computer and Communica-
tions Societies, the International Function
Point Users Group, and the International
Academy of the Information Sciences.

165 Osprey
Hackettstown, NJ 07840
Phone: (908) 813-0208
Fax: (908) 813-0208
E-mail: alexluba1@att.net

